Characterizations of freeness for equidimensional subspaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I. Characterizations of Freeness

Let M be a B-probability space. Assume that B itself is a D-probability space; then M can be viewed as D-probability space as well. Let X ∈ M. We look at the question of relating the properties of X as B-valued random variable to its properties as D-valued random variable. We characterize freeness of X from B with amalgamation over D: (a) in terms of a certain fac-torization condition linking t...

متن کامل

Equivalent Characterizations of Periodical Invariant Subspaces

This paper mainly treats of the interconnections between the periodic Schur form and its associated periodical deflating subspaces. We establish some equivalent statements of the periodic Schur decomposition for regular periodic matrix pairs. Based on these equivalences, we define the eigenspaces for regular periodic matrix pairs, and point out the corresponding eigenvalues inherited from a giv...

متن کامل

Frameness bound for frame of subspaces

In this paper, we show that in each nite dimensional Hilbert space, a frame of subspaces is an ultra Bessel sequence of subspaces. We also show that every frame of subspaces in a nite dimensional Hilbert space has frameness bound.

متن کامل

Height Estimates for Equidimensional Dominant Rational Maps

Let φ : W 99K V be a dominant rational map between quasi-projective varieties of the same dimension. We give two proofs that hV ( φ(P ) ) ≫ hW (P ) for all points P in a nonempty Zariski open subset of W . For dominant rational maps φ : P 99K P, we give a uniform estimate in which the implied constant depends only on n and the degree of φ. As an application, we prove a specialization theorem fo...

متن کامل

Equidimensional and Unmixed Ideals of Veronese Type

This paper was motivated by a problem left by Herzog and Hibi, namely to classify all unmixed polymatroidal ideals. In the particular case of polymatroidal ideals corresponding to discrete polymatroids of Veronese type, i.e ideals of Veronese type, we give a complete description of the associated prime ideals and then, we show that such an ideal is unmixed if and only if it is CohenMacaulay. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Singularities

سال: 2020

ISSN: 1949-2006

DOI: 10.5427/jsing.2020.20a